Geometric Predictors of Abdominal Aortic Aneurysm Maximum Wall Stress.
نویسندگان
چکیده
Abdominal aortic aneurysm (AAA) is a dilation of the abdominal aorta (above 50 % of its original diameter), which can cause death upon rupturing. It usually grows asymptomatically leading to late clinical intervention. The medical criteria to indicate surgery are based on measuring the diameter and growth rate, but in many cases aneurysms fail at uncharacterized critical values. In search of a more efficient technique in predicting AAA failure, there is consensus on the importance of studying its geometric characteristics and estimation of the wall stress, but no fully successful correlation has been found between the two yet. This work examines the relationship between a parameterized geometry (18 input variables and 10 dependent indices) and 1 output variable: the maximum wall stress. Design of Experiments (DOE) techniques are used to generate 183 geometric configurations, for which Finite Element Analyses are performed using ANSYS™ state-of-the-art solver with a hyperelastic, isotropic and homogeneous arterial model for the wall, considering systolic internal pressure (steady state) and the restriction of longitudinal movement at the blood vessel end-sections. Due to the large number of independent parameters to consider, a preliminary Parameters Correlation analysis was performed to determine if a correlation between all input parameters and the maximum stress existed. The correlations between input parameters and the output variable were determined using the Spearman Rank correlation. Correlations with the maximum wall stress for: maximum diameter (ρ = 0.46), wall thickness (ρ = 0.35), dc parameter (ρ = 0.21) and tortuosity (ρ = 0.55) were found. The response surface function between geometry and maximum wall stress was estimated by three models: Universal Kriging geostatistical regression (18 parameters), multiple linear regression (4 parameters) and multiple exponential regression (4 parameters). The models accounted for the stress variance by 99 %, 61 % and 66 %, respectively, with average percentage errors of 0.12 %, 16 % and 17 %, respectively. The solution spaces obtained from this study might provide physicians with a better estimation of the AAA rupture potential and thus, facilitate safer and anticipated treatments of the condition.
منابع مشابه
The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress.
OBJECTIVE To study the correlation between peak wall stress (PWS) and abdominal aorta aneurysm (AAA) geometric parameters in the presence of intraluminal thrombus (ILT). DESIGN Computational study using finite element analysis. MATERIAL AAA models were created by three-dimensional (3D) reconstruction of in vivo acquired computed tomography (CT) images from 19 patients. METHODS PWS was eva...
متن کاملDrug Therapy for Small Abdominal Aortic Aneurysm
Dear Editor,Abdominal aortic aneurysm is often asymptomatic, less recognized, and causes considerable mortality and morbidity, if missed. The incidence varies from country to country and the occurrence is influenced by modifiable (smoking, coronary heart disease, hypertension, dyslipidemia, and prolonged steroid therapy) and non-modifiable risk factors (increasing age, male gender, and positive...
متن کاملExperimental Characterization of the Mechanical Properties of the Abdominal Aortic Aneurysm Wall under Uniaxial Tension
Although many researchers have made the assumption that the abdominal aortic aneurysm (AAA) wall behaves as an incompressible and isotropic material, the experimental evidence for it is insufficient. Hence, the assumptions about the incompressibility and isotropy of the AAA wall were verified through analysis of stretch ratios of samples excised from the aneurysms walls. The stretch ratios were...
متن کاملAdvancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture.
Abdominal aortic aneurysms are a common health problem and currently the need for surgical intervention is determined based on maximum diameter and growth rate criteria. Since these universal variables often fail to predict accurately every abdominal aortic aneurysms evolution, there is a considerable effort in the literature for other markers to be identified towards individualized rupture ris...
متن کاملBlood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics.
Numerical predictions of blood flow patterns and hemodynamic stresses in Abdominal Aortic Aneurysms (AAAs) are performed in a two-aneurysm, axisymmetric, rigid wall model using the spectral element method. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-averaged Reynolds numbers 50< or =Re(m)< or =300, corresponding to a range of peak Re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical engineering transactions
دوره 49 شماره
صفحات -
تاریخ انتشار 2016